## Torque Specifications for Aluminum Fittings

One of the most frequently asked questions is how tight should the connection between the fitting and the adapter be?
The correct answer is to follow the specification guidelines listed below. This will give the proper tightness to allow for a good seal, but prevents damage to the fitting by over torque.

## Torque Specification Guidelines

| Nut Size | Minimum Torque ${ }^{1}$ | Maximum Torque ${ }^{1}$ |
| :---: | :---: | :---: |
| -02 | 50 | 80 |
| -03 | 70 | 105 |
| -04 | 100 | 140 |
| -05 | 130 | 180 |
| -06 | 150 | 195 |
| -08 | 270 | 350 |
| -10 | 360 | 430 |
| -12 | 460 | 550 |
| -16 | 700 | 840 |
| -20 | 850 | 1020 |
| -24 | 900 | 1080 |
| -32 | 1800 | 2000 |

${ }^{1}$ Torque values are shown in inch pounds for aluminum fittings.
There may be times when the correct torque wrench may not be available. In these cases you can follow one of the alternate tightening methods listed at right. Please note that these methods are for aluminum performance fittings and adapters. See Bulletin JA14A for steel fittings.

Remember, overtightening will result in possible damage to the fitting, resulting in possible leaks.

## Alternate Tightening Method One

Flats Method
Here are the steps for an excellent method of tightening. Anyone can tell if the joint was tightened and how much.

1. Tighten the nut by hand until it bottoms the seats.
2. Using a marker, draw a line lengthwise on the nut

| Size | Number of Hex Flats Rotations |
| :---: | :---: |
| -04 | $11 / 2$ to $13 / 4$ |
| -06 | 1 to $11 / 2$ |
| -08 | $11 / 4$ to $13 / 4$ |
| -10 | $11 / 4$ to $13 / 4$ |
| -12 | 1to 1 1/2 |
| -16 | $3 / 4$ to 1 |
| -20 | 1/2 to $3 / 4$ |
| -24 | 1/2 to $3 / 4$ | and extend it onto the adapter.

3. Using a wrench, rotate the nut to tighten. Turn the nut the amount shown on the chart.


Mark a line on the nut and adapter before torquing.


Misalignment of the mark shows the amount which the nut was tightened.

## Alternate Tightening Method Two

The second alternate method of tightening is very simple and easy to remember. Bring the nut to hand tight and then rotate a quarter of a turn. This applies to all sizes. Mark the fitting as indicated in the flat method to confirm the quarter turn.

## Conversion Tables

Inch and Millimeter Equivalents

| Inches |  | Millimeters |
| :---: | :---: | :---: |
| Fractions | Decimals | Decimals |
| $1 / 64$ | .016 | .397 |
| $1 / 32$ | .031 | .794 |
| $3 / 64$ | .047 | 1.191 |
| $1 / 16$ | .063 | 1.588 |
| $5 / 64$ | .078 | 1.984 |
| $3 / 32$ | .094 | 2.381 |
| $7 / 64$ | .109 | 2.778 |
| $1 / 8$ | .125 | 3.175 |
| $9 / 64$ | .141 | 3.572 |
| $5 / 32$ | .156 | 3.969 |
| $11 / 64$ | .172 | 4.366 |
| $3 / 16$ | .188 | 4.763 |
| $13 / 64$ | .203 | 5.159 |
| $7 / 32$ | .219 | 5.556 |
| $15 / 64$ | .234 | 5.953 |
| $1 / 4$ | .250 | 6.350 |
| $17 / 64$ | .266 | 6.747 |
| $9 / 32$ | .281 | 7.144 |
| $19 / 64$ | .297 | 7.541 |
| $15 / 16$ | .313 | 7.938 |
| $21 / 64$ | .328 | 8.334 |
| $11 / 32$ | .344 | 8.731 |
| $23 / 64$ | .359 | 9.128 |
| $3 / 8$ | .375 | 9.525 |
| $25 / 64$ | .391 | 9.922 |
| $13 / 32$ | .406 | 10.319 |
|  |  |  |


| Multiply | By | To Obtain |
| :---: | :---: | :---: |
| Atmospheres | 14.70 | Pounds/square inch |
| Atmospheres | 1.013 | Bars |
| Bars | 0.9869 | Atmospheres |
| Bars | 14.50 | Pounds/square inch |
| Centimeters | 0.3937 | Inches |
| Feet | 0.3048 | Meters |
| Gallons | 231 | Cubic inches |
| Gallons | 3.785 | Liters |
| Gallons (Imperial) | 1.20095 | U.S. gallons |
| Gallons (U.S.) | 0.83267 | Imperial gallons |
| Gallons (water) | 8.3453 | Pounds of water |
| Gallons/minute | 8.0208 | Cubic feethour |
| Horsepower | 745.7 | Watts |
| Inches of mercury | 1.133 | Feet of water |
| Kilometers | 0.6214 | Miles |
| Liters | 0.03531 | Cubic feet |
| Liters | 61.02 | Cubic inches |
| Liters | 0.2642 | Gallons |
| Meters | 3.281 | Feet |
| Meters | 39.37 | Inches |
| Microns | $10^{-6}$ | Meters |
| Miles | 5280 | Feet |
| Miles | 1.609 | Kilometers |
| Miles/hour | 1.609 | Kilometers/hour |
| Miles/hour | 0.8684 | Knots |
| Ounces | 0.0625 | Pounds |
| Ounces | 28.349527 | Grams |
| Ounces (fluid) | 1.805 | Cubic inches |
| Ounces (fluid) | 0.02957 | Liters |
| Pounds | 453.5924 | Grams |
| Pounds of water | 0.1198 | Gallons |
| Pounds/square inch | 0.06804 | Atmospheres |
| Temperature ( ${ }^{\circ} \mathrm{C}$ ) | 1.8 | +32 Temperature ( ${ }^{\circ} \mathrm{F}$ ) |
| Temperature ( ${ }^{\circ} \mathrm{F}$ ) -32 | 5/9 | Temperature ( ${ }^{\circ} \mathrm{C}$ ) |

